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We carried out molecular dynamics simulations of a Lorentz gas, consisting of 
a lone hydrogen molecule moving in a sea of stationary argon atoms. A 
Lennard-Jones form was assumed for the H 2 Ar potential. The calculations 
were performed at a reduced temperature T *=  kT/en2 Ar = 4.64 and at reduced 

�9 __ 0-3 densities p - PAr Ar in the range 0.0744).414. The placement of Ar atoms was 
assumed to be random rather than dictated by equilibrium considerations. We 
followed the trajectories of many H 2 molecules, each of which is assigned in turn 
a velocity given by the Maxwell-Boltzmann distribution at the temperature of 
the simulation. Solving the equations of motion classically, we obtained the 
translational part of the incoherent dynamic structure factor for the H2 
molecule, Str(q, e)). This was convoluted with the rotational structure factor 
S~ot(q, e)) calculated assuming unhindered rotation to obtain the total structure 
factor S(q, ~o). Our results agree well with experimental data on this function 
obtained by Egelstaff et al, At the highest density (p* = 0.414) we studied the 
dependence of S(q, co) on system size (number of Ar atoms), number of H2 
molecules for which trajectories are generated, and the length of time over 
which these trajectories are followed. 

KEY WORDS: Lorentz gas; molecular dynamics; simulation; neutron 
scattering; dynamic structure factor; intermediate structure function. 

1. I N T R O D U C T I O N  A N D  T H E O R Y  

In  th i s  p a p e r  we r e p o r t  m o l e c u l a r  d y n a m i c s  ( M D )  s i m u l a t i o n s  o f  a 

h y d r o g e n - a r g o n  m i x t u r e .  T h e  A r  a t o m  m a s s  is so m u c h  g r e a t e r  t h a n  t h a t  

of  t he  H 2 m o l e c u l e  ( by  a f a c t o r  of  20)  t h a t  to  a first  a p p r o x i m a t i o n  it  is 

va l id  to  r e g a r d  the  A r  a t o m s  as fixed. A t  l ow  dens i t i e s  of  H2,  t he  H2 H2 

i n t e r a c t i o n  c a n  be  n e g l e c t e d ,  so t h a t  t h e  H2 m o l e c u l e  m o t i o n  is t h a t  of  a 
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single particle scattering from an array of fixed centers of force. This is an 
example of a "Lorentz gas. ''(1~ We assume the intermolecular (H2-Ar) 
potential is of the Lennard-Jones (LJ) form 

b/H2 Ar(r) =4~H2 Ar[-(0-H2 Ar/r) 12-  (0"1-12 Ar/r) 6] (1) 

where eH2_Ar=64K and 0"n2 Ar =3"168 ~.~2) Most of our simulations 
are performed at a temperature of 297K and a density (PAr) of 
10.5 x 1027m 3, corresponding to a reduced temperature T*=kT/eI~2 Ar 
=4.64 and a reduced density p* =pAr0"3r=0.414 (0"Ar = 3.405 ~). These 
correspond to a state for which experimental data are available. Some 
calculations were also performed at lower densities, p * =  0.074, 0.154, and 
0.282. 

Rather than using a many-body MD program to generate equilibrium 
configurations of Ar atoms, we have assumed that these are randomly 
placed (we do not expect this to alter significantly any of the main results 
or conclusions of this paper, and in fact a comparison of our results with 
earlier work employing equilibrium configurations ~2) shows close agree- 
ment; see Fig. 8). We then study successively the motion of many (up to 
1000) H2 molecules in this fixed bath of scatterers, by solving classically the 
translational equations of motion [with the intermolecular potential of 
Eq. (1), the H2 rotational motion is unhindered]. A Verlet algorithm was 
used. ~3) The initial velocities of the H2 molecules were assigned randomly, 
but in accord with Maxwell-Boltzmann statistics at the temperature 
of the computer experiment. The subsequent motion of these molecules 
was followed over up to 20,000 time steps [At=0.02z ,  where r =  
(MHz0"22_Ar/4813H2_Ar) 1/2= 8.90X 10 -14 sec is the relaxation period of the 
motion]. Minimum-image periodic boundary conditions were employed. (4) 
The size of the central simulation cell was adjusted in order to vary the 
number of Ar atoms in the range NAt = 400-2500. 

The simulations yield the value of the intermediate structure function 
Ftr(q, t) and its Fourier transform Str(q, ~), the (translational) incoherent 
dynamic structure factor: 

Ftr(q, t) = (exp[ - iq"  r(0)] exp[iq �9 r(t)] ) 

= (jo(qR(t))) (2) 

1 ~+~ t)e ion, Str(q , f O ) = ~  3 Ftr(q' dt (3) 

In Eq. (2), R(t) = Ir(t) - r(0)] is the displacement of the hydrogen molecule 
in time t, and jo(x) = (sin x)/x is the zeroth-order spherical Bessel function. 
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In (2) and (3), hq and hco (where h = h/27z is Planck's constant) may be 
interpreted respectively as the momentum and energy transfer to an H2 
molecule in neutron scattering/z) Experimental data on the dynamic struc- 
ture factor for the incoherent scattering of neutrons are available for 
Hz-Ar  mixtures at the densities and temperature of the simulations, (5) and 
our results may be compared to this. We assume that molecular rotational 
and translational motion is uncoupled at our densities, so it is necessary to 
convolute the translational function St r (q  , co) with the corresponding rota- 
tional function Srot(q, co) calculated for the free molecule. This calculation 
is described by Young and Koppel (6~ and we use their expression for 
Srot(q,  (0). W e  h a v e  

S(q, co) = Str(co') Sro,(co -co')  dco' (4) 
--:Y2 

S(q, co) is normalized so that 

~+ov 
j S(q, co) de) = 1 (5) 

A major aim of this work is to investigate in some detail the 
dependence of S(q, co) (and by implication that of other functions contain- 
ing dynamical information) on various parameters of the simulation. These 
include the system size NAr , the duration of the simulation, and the 
number of H2 molecules whose motion is studied. A number of conclusions 
on the importance of these parameters will be drawn from the results. 

2. C A L C U L A T I O N S  A N D  R E S U L T S  

The simulations were performed on the Ontario Universities Cray 
X-MP/22 supercomputer, and required, in total, approximately 25 h of 
CPU time. For  the highest density, p*=0.414,  three system sizes, 
NAt = 400, 1000, and 2500 particles, were studied, and for each the simula- 
tion was run for both 5000 and 20,000 time steps (i.e., for about 10 and 
40 psec, respectively). In each of these cases the trajectories of either 100 or 
1000 H2 molecules were generated and followed. By observing the displace- 
ment R(t) as a function of time, S(q, co) was computed as described in 
Section 1 for five different values of q = 0.5, 0.7, 1, 1.5, and 2 ~ -  ~, and over 
the whole range of frequencies co for which it is appreciable (about 5 meV 
a t 0 . 5 A  1, a n d 3 0 m e V a t 2 A - ~ ) .  

Our results for NAr = 2500, 20,000 time steps and 1000 H2 trajectories 
are displayed in Figs. 1-5, where they are compared with neutron 
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Fig. 1. The incoherent dynamic structure factor S(q, co) as a function of frequency for 
q = 0.5 ~_-~. The simulation is shown by the line and the experimental data by solid circles 
(p* =0.414). 

scattering data obtained by Egelstaff et al. (s) (we have deconvoluted the 
experimental resolution function r from these data). Agreement is on the 
whole very good. However, the simulation S(q,  co) decays rather too 
rapidly with co. This is presumably because the Ar atom mass, although 
large compared to the H 2 mass, is not infinite, so that some degree of Ar 
atom motion occurs on the time scale of H2 molecular motion. This effect 
is discussed in more detail in ref. 2. Also, the simulation curves show 
"peaking" at low frequencies. This effect reflects the oscillatory motion of 
a n  H 2 molecule which is nearly trapped in a rigid cage of Ar atoms. (7) The 
experimental curves show a much smaller effect, presumably because Ar 
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Fig. 2. The dynamic structure factor S(q, o)) for q = 0.7 ,~ t (p ,  = 0.414). 
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Fig. 3. The dynamic  s t ruc ture  factor S(q, co) for q = 1/~ L ( p ,  = 0.414). 

atom motion eventually breaks up the cage, allowing the H2 molecule to 
escape. 

Figure 6 shows a plot of qS~r(q, co) vs. co/q for various values of q. This 
graph clearly demonstrates departures from ideality, since for an ideal gas 

qStr(q , co) = (Mw2/2rckr) 1/2 exp[ -(MHj2kT)(co/q) 2 ] (6) 

is a universal function of co/q, i.e., is independent of q. The behavior 
actually observed is that the zero-frequency amplitude qStr(q, 0) increases 
with decreasing q, reflecting the diffusive character of H 2 molecule motion 
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Fig. 4. The dynamic  s t ruc ture  factor S(q, ~o) for q = 1.5 ~ ~ (p* = 0.414). 
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The dynamic structure factor S(q, co) for q = 2  ~-~ (p* =0.414). 

at long times. (2) Figure 7 shows a plot of F t r ( q  , t) VS. qt for different q; the 
ideal gas result, which is 

Ft,(q, t) = exp 2 MH2 q2t2 

is also shown. For large t, Ftr(q, t) lies significantly above this 

(7) 

value, 
especially for small q, displaying a more exponential-like decay/2) 

Tables I and II show a comparison of the values of Ftr(q, t) obtained 
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Fig. 6. Plot of qSir(q, CO) VS. ~O/q for q = 0.5, 1, 2 ~-1 .  Amplitude at zero frequency increases 
as q decreases (p* =0.414). 
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Fig. 7. 
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Plot of Ftr(q , l) vs. qt/'z for q=0.5,  1, 2/k -1. Ideal gas result (dotted line) is also 
shown. Deviations from ideality increase as q decreases ( p * =  0.414). 

Table I. The Intermediate Structure Function Ftr(q, t) Computed 
from the Different Simulations, for Various Values of q~ 

Ftr(q , t) 

NAr q ~ 0 . 5  ~ -1 q = l / ~  1 q = 2  /~-~ 

20,000 time steps, 1000H 2 tr~ectories 

400 0.5013 0.5026 0.5035 
1000 0.5065 0.5082 0.5097 
2500 0.4947 0.4956 0.4967 

5000 time steps, 1000H 2 tr~ectories 

400 0.5013 0.5034 0.5047 
1000 0.5025 0.5089 0.5113 
2500 0.4920 0.4961 0.4973 

20,000 time steps, 100H2 tr~ectories 

400 0.5218 0.5226 0.5229 
1000 0.5432 0.5466 0.5492 
2500 0.4516 0.4491 0.4483 

5000 time steps, 100 H2 trNectories 

400 0.5273 0.5271 0.5274 
1000 0.5439 0.5512 0.5516 
2500 0.4551 0.4538 0.4517 

" For each case (for a particular value of q) t is the same. The values used are t/c = 3.30, 1.34, 
and 0.62 for q = 0.5, 1, and 2 ~-~ ,  respectively. At these times Ft,(q, t) is approximately 1/2. 
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Table I1. The Intermediate Structure Function Ftr(q, t) Computed 
from the Dif ferent  Simulations, for Various Values of qa 

Ft.(q, t) 

NA~ q=0.5A 1 q = l A  1 q = 2 ~ - 1  

20,000 time steps, 1000H 2 tr~ectories 

400 0.05792 0.02465 0.008713 
1000 0.05944 0.02505 0.009375 
2500 0.06098 0.02677 0.009918 

5000 time steps, 1000H 2 tr~ectories 

400 0.06481 0.02667 0.009584 
!000 0.06271 0.02445 0.008973 
2500 0.06361 0.02545 0.007953 

20,000 time steps, 100 H 2 tr~ectories 

400 0.07046 0.03454 0.01256 
1000 0.07417 0.02918 0.00953 
2500 0.04317 0.01589 0.00635 

5000 time steps, 100H2 tr~ectories 

400 0.1042 0.04219 0.01302 
1000 0.0798 0.02658 0.01029 
2500 0.0500 0.02073 0.00553 

" In each case (for a particular values of q) t is the same. The values used are t/r = 30, 20, and 
10 for q = 0.5, 1, and 2 ~. t, respectively. These times are well into the tail of Ftr(q , t). 

from the different simulations.  Compar isons  are given both for times at 
which this funct ion has decayed to approximately one-half  of its original 

value (of 1), and for much longer times in the "tail" of Ftr(q, t). 

3.  D I S C U S S I O N  

The biggest var iat ion in Ftr(q , t) is seen on changing the n u m b e r  of H2 
trajectories. F r o m  Tables I and II we see this can be as much as 10% at 
the half-life, and 50 % or more in the tail. (On  the other hand,  increasing 
the n u m b e r  of trajectories still further, to 5000, produces much smaller 
changes, on the order of 1%.)  Clearly, to generate the proper Maxwel l -  
Bol tzmann  statistics for the H2 molecule's mot ion,  it is necessary to follow 
about  1000 different randomly-genera ted  trajectories; smaller numbers  are 
inadequate,  To quantify our  unders tand ing  of this effect, we have measured 
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the effective temperature Tefr for each simulation. This is defined by 
~kTefr=• /v  2\ where (v 2} is the mean square velocity of the H) 2 H 2 \  /~  

molecule averaged over all H a trajectories generated. Because the number 
of trajectories is finite, T~ff differs from the desired or "set" temperature 
T =  297 K. For a system of 2500 Ar atoms followed over 20,000 time steps, 
we find (~T/T= ( T e ~ - T ) / T =  0.16 and 0.03 for 100 and 1000 trajectories, 
respectively. Consider now how this error in temperature affects Ftr(q, t). 
At short times, Ftr is approximately given by the ideal gas result, Eq. (7) 
(cf. Fig. 7). Thus, Ftr = e x p ( - ~ T ~ ) ,  where ~ is a constant (a function of q 
and t). At longer times, the H 2 molecular motion becomes diffusive, and 
Ftr ~ exp(-DqZt) ,  where D is the diffusion constant. (2) For the state condi- 
tions studied D is roughly given by kinetic theory, i.e., D oc x / T ~  
approximately, so that here Ftr = exp( - ct' x//T~r~), where ~' is another con- 
stant. In either case, an error cST in T leads to an error gFtr in Ft, given by 
5F~JF, r~  6T/Tln F~r, to within a factor of 2. From Tables I and II this 
implies 6Ft~/Ft~ ~ 0.11 and 0.02 for 100 and 1000 trajectories, respectively, 
at the half-life of F~, and 2)F~JF~ ~ 0.6 and 0.1 in the tail. These numbers 
agree very closely with the observed differences in Ftr from the 100- and 
1000-trajectory simulations (see above, and also Tables I and II). We deem 
the errors at the 1000-trajectory level, ~ 2 %  at the half-life and ~ 10% in 
the tail, to be acceptable. 

The next largest effect comes from changing the size of the system. 
With 1000 trajectories, there is about a 2% difference at the half-life in 
going from 1000 to 2500 Ar atoms. (For fewer trajectories, the effect is 
much more pronounced--about  20% for 100 trajectories.) In the tail, 
variations of about I0% are recorded as NA~ varies. Note that these 
changes are not monotonic functions of NA~, nor is there any definite 
evidence of convergence at 2500 atoms. 

The dependence of Ftr(q, t) on NA~ appears to be essentially inde- 
pendent of q (cf. Tables I and II). One expects some q dependence, but 
only at substantially smaller values of q. To see this, consider the following 
argument. Assuming diffusive behavior, F t r ~ e x p ( - D q 2 t ) .  Suppose we 
wish to observe the decay of Ft~ to 2 % of its initial value (unity). Then we 
must follow the motion of an H 2 molecule for a time of approximately 
t = 4/Dq 2. In this time the molecule will diffuse, on average, a distance 
( r2 )  1/2= (6Dt) 1/2= (24)1/2/q. If (r2)1/2 > �89 where L =  (NAt/PAr) u3 is the 
size of the central MD simulation cell, a molecule which starts at the center 
of this cell will have moved into an image cell. Because of the periodic 
boundary conditions, its surroundings, and therefore its subsequent 
motion, will differ somewhat from those of a real (nonperiodic) system. 
This will introduce an error in the observed Ft,(q, t) for (24)'/2/q> �89 
or q> lOlL. For NA~=400, 1000, 2500 we have L = 3 4 ,  46, 6 2 ~ - 1 ,  
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meaning that Ftr is in error for q<0.3 ,  0.2, 0.15 A- l ,  respectively. In these 
simulations, however, q~>0.5 A 1, and this source of error will not be 
manifest, even for the smallest system studied. 

The least important effect comes from changing the length of the 
simulation. Increasing the number of time steps from 5000 to 20,000 
produces changes of less than 1% at the half-life and up to 20 % in the tail 
of Ftr(q, t). The corresponding change in the peak of S(q, co) is 
approximately 1%. These findings are significant inasmuch as previous 
MD simulations of F(q,  t) and S(q,  co) have employed much longer runs. 
For example, both Schoen et al. ~8~ and Levesque et al. (9) simulated LJ 
liquid argon for 100,000 or more time steps (their At 's  are comparable to 
ours after scaling). Our results suggest that, in the case of a Lorentz gas, 
much shorter runs will suffice. 

Figure 8 shows a comparison of our computed Ftr(q, t) for q = 1 ~ 1 
with calculations by Sharma et al. ~2) These authors simulated a Lorentz gas 
model of H2-Ar  assuming an equilibrium, rather than a random, place- 
ment of Ar atoms; however, rather few (~5 0 )  H2 trajectories were 
followed. Agreement is very good and probably within the statistical uncer- 
tainty of the results in ref. 2. This indicates that the placement of the atoms 
of the host medium (Ar atoms) has a small effect on the dynamical 
behavior of the H 2 molecule, at fixed density. 

Figure 9 shows the effect on Sir(q, co), for q = 0.5 A 1, of changing the 
Ar atom density. Simulations were performed at reduced densities 
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Fig. 8. Comparison of Ftr( q, t) from this simulation (solid line) with earlier calculations by 
Sharma et al. (21 (dotted line), which assume an equilibrium, not a random, placement of Ar 
atoms, q= I ,~-~ (data from ref. 2 were interpolated). (p* =0.414.) 
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Fig. 9. Plot of qStr(q , co) vs. co/q for different densities (p*=0.414, 0.282, 0.154, 0.074); 
q=0.5 ,~. 1. Also shown is the ideal-gas result (dotted line). Deviations from ideality increase 
as p* increases. 

p* =0.074, 0.154, and 0.282 as well as p* =0.414. (T* was kept constant 
at 4.64.) For  these runs we took NAr = 1000, and followed 1000 H2 trajec- 
tories for 5000 time steps. The data are strongly peaked at low frequencies, 
as a result of the long-time behavior of Ftr(q, t). As the density is lowered, 
deviations from ideality (ideal gas result shown as dotted line) become less 
pronounced. For higher values of q, Str(q, 6o) lies much closer to the ideal 
gas result, as expected. 

4. S U M M A R Y  

Molecular dynamics simulations of a Lorentz gas (H 2 Ar mixture 
with Lennard-Jones interaction) yield results for the dynamic structure 
factor S(q,  co) in good agreement with experiment for q >~ 0.5 A ~. 

We have studied the dependence of simulated quantities on various 
parameters of the system, such as its size, the number of H2 trajectories 
generated, and their duration. These studies show that while it is necessary 
to follow a fairly large number (about 1000) of trajectories, these can be of 
quite short duration (5000 time steps). Furthermore, reasonably small 
systems will suffice. For  the current experimentally-accessible range of 
q>~0.5 A -1, 400 Ar atoms is large enough; should data become available 
at lower q, however, we anticipate that somewhat larger systems will be 
needed, requiring proportionately longer amounts of computer time. 
Interesting long-time dynamics may become apparent for these smaller 
values of q. 
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